Thursday, 31 January 2013

Wednesday, 30 January 2013

POWER


KID KING 1/16


rc jet


2WD short course truck 1/10


RC JETS


Jets tend to be very expensive and commonly use a micro turbine or ducted fan to power them. Most airframes are constructed from fiber glass and carbon fiber. For electric powered flight which are usually powered by electric ducted fans, may be made of styrofoam. Inside the aircraft, wooden spars reinforce the body to make a rigid airframe . They also have kevlar fuel tanks for the Jet A fuel that they run on. Most micro turbines start with propane, burn for a few seconds before introducing the jet fuel by solenoid. These aircraft can often reach speeds in excess of 320 km/h (200 mph). They require incredibly quick reflexes and very expensive equipment, so are usually reserved for the expert.
In the U.S.A the FAA heavily regulates flying of such aircraft to only approved AMA Academy of Model Aeronautics sites, in where certified turbine pilots may fly. Also, the AMA requires model aviation enthusiasts who wish to operate miniature gas turbine powered RC model aircraft, to be certified in the operation of the type of gas turbine engine, and all aspects of safety in operating such a turbine-powered model aircraft, that they need to know in flying their model. Some military bases allow such high tech aircraft to fly within limited airspace such as Kaneohe Marine base in Hawaii, and Whidbey Island NAS in Washington State.
An average turbine aircraft will cost between $150–$10,000 with more than $20,000 all-up becoming more common. Many manufactures sell airframes such as Yellow Aircraft and Skymaster. Turbines are produced from The Netherlands (AMT)to Mexico (Artes Jets). The average microturbine will cost between $2500 and $5000 depending on engine output. Smaller turbines put out about 12 lbf (53 N) of thrust, while larger microturbines can put out as much as 45 lbf (200 N) of thrust. Radio control jets require an on board FADEC (Full Authority Digital Engine Control) controller, this controls the turbine, just like a larger turbine. RC Jets also require electrical power. Most have a lithium polymer (LiPo) battery pack at 8-12 volts that control the FADEC. There is also a LiPo for the onboard servos that control ailerons, elevator, rudder, flaps and landing gear.
Of much less complexity are the types of RC jet aircraft that actually use an electric motor-driven ducted fan instead to power the aircraft. So called "EDF" models can be of much smaller size, and only need the same electronic speed contoller and rechargeable battery technology as propeller-driven RC electric powered aircraft use.

history

Early commercial products
Several early commercially viable RC cars were available by mid-1966, produced by the Italian company El-Gi (Elettronica Giocattoli) from Reggio Emilia. Their first model, a 1:12 Ferrari 250LM was available in the UK in December 1966, through importers Motor Books and Accessories, St. Martins, London, and early in 1967 through Atkinson's model shop in Swansea. This model was followed by El-Gi's 1:10 Ferrari P4, first shown at the Milan Toy Fair in early 1968.
In the mid-late 1960s a British company, Mardave, based in Leicester, began to produce commercially viable RC Cars. Their first cars were nitro- or gas-powered cars sold in the local area in the early 1970s.
In the early 1970s several commercial products were created by small firms in the US. Most of these companies began as slot car companies and with the wane in popularity of that genre moved into the R/C field. Among these were Associated Electrics, Thorp, Dynamic, Taurus, Delta, and Scorpion. These early kits were 1/8 scale nitro-powered (then called gas) aluminum flat pan cars powered by a .21 or smaller engine. The bodies for these cars were made of polycarbonate (the most popular made of Lexan). The most popular engine was the K&B Veco McCoy. The primary sanctioning body for races for these cars was Remotely Operated Auto Racers (ROAR). In 1973-74, Jerobee, a company based in Washington State, created their 1/12 nitro car using a Cox .049 engine. Several aftermarket companies created parts for this car including clear Lexan bodies, heat sinks, and larger fuel tanks. This scale evolved into 1/12 scale electric racing when Associated Electrics created the RC12E in 1976-77. Jerobee became Jomac and created their own electric kit called the Lightning 2000 that won the "ROAR" National Championships in 1981& 82 for 6-Cell Modified and 82 the 6-Cell Production classes. The Lightning 2000 was designed by Don McKay and Jon Congdon.
By the late 1970s, interests in 1/12 scale electric racing began to grow as 1/8 scale IC racers, the sole racing category at the time, needing to race throughout the winter as an alternative to their impractical IC cars began to race 1/12 cars, therefore a winter national series was developed. As a result, the series grew into popularity as a large number of scratchbuilt cars started to appear in these meetings.[1]
In 1976, the Japanese firm Tamiya, which was renowned for their intricately detailed plastic model kits, released a series of elegant and highly detailed, but mechanically simple electric on-road car models that were sold as "suitable for radio control". Although rather expensive to purchase, the kits and radio systems sold rapidly. Tamiya soon began to produce more purpose-built remote-controlled model cars, and were the first to release off-road buggies featuring real suspension systems. It was this progression toward the off-road class that brought about much of the hobby's popularity, as it meant radio-controlled cars were no longer restricted to bitumen and smooth surfaces, but could be driven virtually anywhere. The first true Tamiya off road vehicles were the Sand Scorcher and the Rough Rider, both released in 1979, and both based on realistic dune buggy designs. Tamiya continued to produce off road vehicles in increasing numbers, featuring working suspensions, more powerful motors, textured off-road rubber tires and various stylized "dune buggy" bodies. They also produced trucks, such as the Toyota HiLux Pickup, that featured realistic 3 speed gearboxes and leaf-spring suspension systems. All of these models were realistic, durable, easy to assemble, capable of being modified, and simple to repair. They were so popular that they could be credited with launching a boom in radio-controlled model cars in the early to mid 1980s, and provided the basis for today's radio-controlled car market. Popular Tamiya models included the Grasshopper and the Hornet dune buggies as well as the Blackfoot and Clodbuster monster truck models. The earliest Tamiya models, particularly the early off roaders, are now highly sought after by vintage R/C collectors and can fetch prices of up to US$3000 on internet auction sites if still in mint, unbuilt form. Acknowledging their continued popularity, several of the early kits have even been re-released by Tamiya during 2005–2007, with a few alterations.
A British firm, Schumacher Racing, was the first to develop an adjustable ball differential in 1980, which allowed nearly infinite tuning for various track conditions. At the time the majority of on-road cars had a solid axle, while off-road cars generally had a gear-type differential. Team Associated followed suit with the introduction of the RC100 1/8 scale gas on-road car, RC12 1/12 scale on-road electric car, and RC10 1/10 scale off-road electric racing buggy in 1984 (see below). Team Losi followed with the introduction of the JRX2 in 1988.

Gasoline-powered models


Gasoline powered vehicles, also known as "fuelies" or "gassers", run on a mix of gasoline and oil. They cost much more (usually $800–$3000 RTR) than nitro and electric cars. They are also much bigger and therefore require much more space to run. They do not usually have as high top end speeds (compared to nitro and some electrics) but have lots of power and do not take a lot of fuel to run. Over time the cost of a gas-powered car can be less than some nitro-powered vehicles, because of the high cost of nitro fuel and buying new nitro engines to replace worn-out ones. In addition, gas-powered motors rarely if ever require tuning and have a very long lifespan. These gas-powered vehicles really pertain to the individual who is more interested in scale than imagination. These large scale models have been popular in Europe for over a decade and have recently become very popular in the US thanks to companies like HPI Racing producing affordable high quality models locally
Electric models
Electrically powered models utilise mechanical or electronic speed control units to adjust the amount of power delivered to the electric motor. The power delivered is proportional to the amount of throttle called for by the transmitter - the more you pull the trigger, the faster it goes. The voltage is "pulsed" using transistors to produce varying output with smooth transitions and greater efficiency. Electronic speed controllers use solid state components to regulate duty cycle, adjusting the power delivered to the electrical motor. In addition, most electronic speed controllers can use the electric motor as a magnetic brake, offering better control of the model than is possible with a mechanical speed control. Mechanical speed controllers use a network of resistors and switch between them by rotating a head with an electrode around a plate that has electrical contacts. Mechanical speed controllers are prone to being slow to react because they are actuated by servos, waste energy in the form of heat from the resistors, commonly become dirty and perform intermittently, and lack a dedicated braking ability. They appear only in vintage RC models, and are now essentially obsolete. Most electric cars up to recently used brushed motors but now many people are turning to brushless motors for their higher power output and because they require much less maintenance. They are rated either in relative turns or Kv. The Kv number tells how many RPM the motor will turn per volt, assuming no load and maximum efficiency. However, the ability of the system to put out power is dependent on the quality of the batteries used, wires and connectors supplying power. Due to their power, brushless motors are also used in bigger monster trucks and 1/8 nitro-powered buggies that have been converted to electric. High quality brushless systems can be much more powerful than nitro and can accomplish feats such as standing backflips when installed in a monster truck, most notably the HPI Savage Flux. Some 1/5 scale gas to electric conversions are in production but are uncommon due to high price.
Radio-controlled (or R/C) cars are self-powered model cars or trucks that can be controlled from a distance using a specialized transmitter. The term "R/C" has been used to mean both "remote controlled" and "radio controlled", where "remote controlled" includes vehicles that are connected to their controller by a wire, but common use of "R/C" today usually refers to vehicles controlled by a radio-frequency link. This article focuses on radio-controlled vehicles only.
Cars are powered by various sources. Electric models are powered by small but powerful electric motors and rechargeable nickel-cadmium, nickel metal hydride, or lithium polymer cells. There are also brushed or brushless electric motors. Most fuel-powered models use glow plug engines, small internal combustion engines fueled by a special mixture of nitromethane, methanol, and oil (in most cases a blend of castor oil and synthetic oil). These are referred to as "nitro" cars. Recently, exceptionally large models have been introduced that are powered by small gasoline engines, similar to string trimmer motors, which use a mix of oil and gasoline. Electric cars are generally considered easier for the novice to work with compared to fuel-driven models, but can be equally as complex at the higher budget and skill levels.
In both of these categories, both on-road and off-road vehicles are available. Off-road models, which are built with fully functional off-road suspensions, and a wide tire selection, can be used on various types of terrain. On-road cars, with a much less robust suspension, are strictly limited to smooth, paved surfaces. In the past decade, advances in "on-road" vehicles have made their suspension as adjustable as many full scale race cars, today

rc gokart


1/16 rally car